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Abstract We present the analysis of the atmospheric budget of nitrophenols and nitrocresols, a class of
nitroaromatics that raise great ecosystem and health concerns due to their phytotoxic and genotoxic
properties, during the spring wheat harvest season in Eastern China. Significant quantities with maximum
concentrations over 100 pptv and distinct diurnal patterns that peak around midnight and maintain low
levels throughout the day were observed, in coincidence with the extensive open crop residue burning
activities conducted in the vicinity. An observationally constrained zero‐dimension box model was
constructed to assess the relative importance of various production and removal pathways at play in
determining the measured surface concentrations. The NO3‐initiated dark chemistry, in concert with
meteorological variations predominantly dilution and entrainment, exerts major controls over the observed
diurnal behaviors of nitrophenols and nitrocresols. Structural isomerism is predicted to have a significant
impact on the multiphase partitioning and chemistry of nitrophenol isomers. Furthermore, simulations
show that an appreciable amount of nitrophenols is present in the aerosol water, thereby representing an
important source of water‐soluble brown carbon in atmospheric aerosols under the humid subtropical
weather prevailing during the campaign. Sensitivity analysis performed on the model parameterizations of
reaction schemes helps to further understand the chemistry underlying the diurnal cycles. Implementing
NO‐dependent yields of cresols from toluene photooxidation improves the model predictions of nitrocresols
at low NO ranges (<1 ppb), thereby underscoring the complexity of the peroxy radical reaction pathways
from toluene photooxidation under atmospheric relevant conditions.

Plain Language Summary Nitrophenols and nitrocresols represent an important class of
nitroaromatics that impact Earth's climate by contributing to the formation of light‐absorbing aerosols
(brown carbon). Here, through a combination of field observations and model simulations, we examine the
atmospheric transformation mechanisms of nitrophenols and nitrocresols present in large quantities
from the open crop residue burning during the spring wheat harvest season in Eastern China. We show that
the observed distinct diurnal patterns of nitrophenols and nitrocresols are responsive to the complex
interplay of meteorological variations, oxidative processes, and multiphase chemistry in the atmosphere.
Our analysis affords insights into the atmospheric life cycle of nitrophenols and nitrocresols with respect to
chemical transformation, mass transport, and phase transitions. Such information is essential in further
understanding the climate and health consequences of nitrophenols and nitrocresols.

1. Introduction

Nitrophenols and nitrocresols have been of environmental and human health concern over the last few
decades due to their phytotoxicity that contributes to the forest decline and their genotoxicity that is asso-
ciated with an increased risk of cancer (Bonnefoy et al., 2012; Rippen et al., 1987). Sources of atmospheric
nitrophenols and nitrocresols include direct emissions that result from coal and wood combustion, fugitive
emissions in the manufacture of dyes, resins, explosives, and pharmaceuticals, as well as secondary produc-
tion from the atmospheric nitration processes (Harrison, Barra, et al., 2005). Gas phase production pathways
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mainly include photooxidation of phenol and cresols in the presence of NOx and the NO3‐initiated oxidation
of phenol and cresols. In addition, aqueous phase photonitration has been found to contribute to the forma-
tion of nitrophenols and nitrocresols as well, the importance of which depends on the abundance of the
liquid water content (Harrison, Heal, et al., 2005; Vione et al., 2009).

Once released to the atmosphere, nitrophenols and nitrocresols are subject to degradation that is primarily
initiated by reactions with OH radicals during the day and NO3 radicals at night. Additionally, nitrophenols
and nitrocresols are readily photolyzed due to their strong ultraviolet‐visible absorptivity (Chen et al., 2011;
Jacobson, 1999). Owing to the presence of strong intramolecular hydrogen bonds between the –OH and
–NO2 moieties, photolysis of nitrophenols and nitrocresols over the 300–500 nm region is a proposed photo-
lytic source of nitrous acid (HONO), an important precursor of OH radicals in the polluted environment
(Bejan et al., 2006; Sangwan & Zhu, 2016). Another fate of nitrophenols and nitrocresols in the atmosphere
is condensing onto aqueous/organic aerosols and cloud droplets leading to the formation of secondary
organic aerosols (SOA). The deprotonated forms of nitrophenols and nitrocresols in the condensed phase
are characterized by even stronger absorption at longer wavelengths (Laskin et al., 2015). It has been
suggested that nitroaromatics as a group formed through atmospheric oxidation of biomass burning emis-
sions are major chromophores that contribute to the formation of atmospheric brown carbon (Desyaterik
et al., 2013; Iinuma et al., 2010; Kitanovski et al., 2012). Further aqueous phase processes, including oxida-
tion by OH(aq) and NO3(aq) radicals and subsequent nitration to form dinitrophenols, have been suggested as
a potential loss pathway of nitrophenols (Vione et al., 2001).

In this work, ground‐based measurements of a suite of trace gases were used alongside an observationally
constrained zero‐dimensional photochemical box model to explore the atmospheric transformation
mechanisms of nitrophenols and nitrocresols during the widespread open crop residue burning season in
Eastern China. From a series of sensitivity and budget analyses, processes that control the temporal varia-
tions of nitrophenols and nitrocresols are identified. By validating the model performance against observa-
tions on site, the representativeness of the physicochemical schemes embedded in the model framework is
further probed. This work provides an observationally based demonstration of how the interplay of night-
time production, daytime photolysis, boundary layer entrainment, and dilution by ventilation exerts a
primary control over the evolution of nitrophenols and nitrocresols in the atmosphere.

2. Methods
2.1. The EXPLORE‐YRD Campaign

The EXPLORE‐YRD (EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol
foRmation and their Effects in Yangtze River Delta) campaign was carried out in the late spring of 2018
(23 May to 24 June) at the Jiangsu Provincial Taizhou weather radar station located in Eastern China
(32.558°N, 119.994°E). This rural site is surrounded by farmlands and approximately 800 m away from
two expressways crossing to the southwest. During the campaign, meteorological conditions were relatively
warm (Tavg = ~295 K) and humid (RHavg = ~73%) with frequent sunshine and low wind speed
(WSavg = 2.01 m/s); see Figure S1 in the supporting information.

2.2. Measurements

A suite of instruments was used to measure primary gas pollutants including NOx (Model 42i, Thermo
Fischer, USA), O3 (Model 49i, Thermo Fischer, USA), CO (Model 48i, Thermo Fischer, USA), and SO2

(Model 43C, Thermo Fischer, USA). The photolysis frequencies of O3, NO2, NO3, HONO, HCHO, and
H2O2 were calculated from the spectral actinic flux density measured by a customized spectral radiometer
(Bohn et al., 2008). Particle size distribution and number concentration were measured by a differential
mobility analyzer (Model 3081, TSI, USA) coupled to a condensation particle counter (Model 3787, TSI,
USA). The aerosol water content was derived from the measurements of a customized hygroscopicity tan-
dem differential mobility analyzer; see details given in Jing et al. (2016). Organic carbon (OC) and elemental
carbon (EC) in fine particles were measured hourly by a semicontinuous analyzer manufactured by Sunset
Laboratory Inc; see details given in Hu et al. (2012).

Real‐time analysis of nonmethane organic carbons (NMOCs) was performed by a commercial proton trans-
fer reaction time of flight mass spectrometer (PTR‐MS, IONICON Analytik GmbH, Austria). Measurements
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reported here were obtained at a sampling rate of 0.1 Hz. The instrument was operated in them/z range of 0
to 530, with a mass resolution in the range of 3,500 to 5,500 at m/z 45–204. The drift tube was operated at
850 V with a pressure of 3.8 mbar at 80°C. Calibrations were performed by gas standards (Spectra Gases
Inc. USA) and certified permeation tubes (KinTek Inc. USA) at five concentration levels from 0 to 10 ppbv.
The calibration mixture includes formic acid (CH2O2), acetic acid (C2H4O2), furan (C4H4O), acrylic acid
(C3H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), furfural (C5H4O2), phenol (C6H6O), o‐cresol
(C7H8O), 4‐nitrophenol (C6H5NO3), 3‐methyl‐4‐nitrophenol (C7H7NO3), benzaldehyde (C7H6O), naphtha-
lene (C10H8), and limonene (C10H16). Sensitivity of all standards tested here is in the range of 745 to
3,176 ncps/ppbv; see details in Table S1 in the supporting information. Although phenol and o‐cresol were
included in the calibration mixture, it is known that PTR‐MSmeasurements of phenol and cresols can suffer
mass interferences from fragmentation of larger organics (Jobson et al., 2011) and we note that the phenol
and cresols measurements were not used in this study.

A custom‐built online gas chromatography system equipped with a mass spectrometer and a flame ioniza-
tion detector (GC‐MS/FID) was used to measure C2–C10 hydrocarbons and halocarbons with a time resolu-
tion of 1 hr. Most C2–C5 hydrocarbons were measured by the FID channel equipped with a PLOT column
(15 m × 0.32 mm ID, J&W Scientific, USA). Other compounds were analyzed by the MS channel using a
DB‐624 column (30 m × 0.25 mm ID, J&W Scientific, USA). Single point calibrations were performed on
a daily basis with a mixture of gas standards at the concentration of 1 ppbv. Detailed description of the
system can be found in Liu et al. (2009). Comparison of GC measured acetonitrile and a selection of
VOCs relevant to this study with the corresponding PTR‐MS measurements was conducted, and agreement
within ~19% was achieved.

2.3. Modeling

The 0‐D box model (Wang et al., 2019) used for simulating the diurnal profiles of species of interest accounts
for (i) gas phase daytime and nighttime chemistry, (ii) dynamic partitioning within gas, liquid, and particle
phases, (iii) emission, (iv) dry deposition, (v) dilution, and (vi) entrainment of background air from the free

troposphere. A conservation balance onCi
g, the gas phase concentration of a given compound i, is expressed

as follows:

dCi
g

dt
¼ Pchem; i – Lchem; i þ dCi

g=dt
� �

gp
þ dCi

g=dt
� �

gaq
þ Ei – kdep; iCi

g – kdil; iC
i
g – kent; i Ci

g – C
i
bkg

� �
(1)

where Pchem,i and Lchem,i are the production and removal rates with respect to gas phase chemistry, the

two differential terms, (d Ci
g/dt)gp and (d Ci

g/dt)gaq, represent the gas‐particle partitioning and the mass

transfer between the gas and liquid phase, respectively, Ei is the emission rate, kdep,i is the dry deposition
rate coefficient, which is calculated using the industrial source complex model system (Atkinson
et al., 1997), kdil,i is the first‐order dilution rate coefficient that characterizes transport processes such as
mixing of outside air and is constrained by the measured diurnal variations of acetonitrile (Figure S2 in

the supporting information), Ci
bkg is the concentration of species i in the residual layer, which is assumed

as zero, and kent,i is the rate coefficient for entrainment:

kent; i ¼ dH
dt

1
H

if
dH
dt

> 0 kent; i ¼ 0 if
dH
dt

≤ 0 (2)

where H is the boundary layer height, which is derived from the European Centre for Medium‐Range
Weather Forecasts (ECMWF) reanalysis data (ERA5 hourly data, accessible at https://cds.climate.coperni-
cus.eu/cdsapp#!/dataset/reanalysis‐era5‐single‐levels?tab=overview).

Reaction kinetics and mechanisms for the gas phase degradation of major VOCs observed during the cam-
paign, including propylene, acrolein, furan, isoprene, benzene, toluene, and monoterpenes, were extracted
from the Master Chemical Mechanism (MCMv3.3.1, accessible at http://mcm.leeds.ac.uk/MCM/).
Photolysis kinetics of nitrophenols and nitrocresols derived from previous studies (Bardini, 2006; Chen
et al., 2011) were added into the gas phase scheme; see Table S2 in the supporting information. In addition
to gas phase reactions, a simplified scheme describing the production of nitrophenols from the aqueous
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nitration of phenol was incorporated in the model as well; see reactions listed in Table S2 in the supporting
information. Kinetics for the sequential reactions of phenol with OH and NO2 are derived from measure-
ments by Barzaghi and Herrmann (2002).

The gas‐particle partitioning of a given species i is treated as a dynamic mass transfer process:

dCi
g

dt

 !
gp

¼ –kgp; iCi
g þ kpg; iC

i
p (3)

dCi
p

dt

 !
pg

¼ kgp; iC
i
g – kpg; iC

i
p (4)

where Ci
p is the particle phase concentration of species i and kgp,i and kpg,i are first‐order rate constants for

species i transport to and from aerosols. As the gas‐particle mass transfer can be limited by gas phase diffu-
sion, interfacial uptake and bulk phase diffusion, we use the gas‐particle accommodation coefficient, αp, i, to
approximate resistances to gas‐particle partitioning from interface accommodation and particle phase
diffusion (Cappa et al., 2013; Huang et al., 2018; McVay et al., 2016; Zhang et al., 2015). Thus, the overall rate
constant from gas to aerosol phase kgp,i can be expressed as follows:

1
kgp; i

¼ 1
4πDg; iRpNp

þ 1
παp; iciR2

pNp
(5)

where Dg,i is the gas phase diffusivity of species i, ci is the gas phase mean velocity of species i, Rp is the
particle radius, and Np is the number of particles per unit volume of air. In the model, a single particle size
bin of 100 nm is used, such that the particle number concentration can be calculated based on the mea-
sured organic aerosol mass concentration (COA) (Nah et al., 2016; Schwantes, McVay, et al., 2017;
Zhang et al., 2014; Zhang & Seinfeld, 2013). The mass transfer between the gas and particle phase is a con-
tinuous process till equilibrium is established which is assumed to follow Raoult's law; therefore, the mass
transfer from the particle to the gas phase is given by

kgp; i
kpg; i

¼ RTCOA

PiMOAγOA
(6)

where R is the ideal gas constant, T is the temperature, Pi is the vapor pressure of species i, MOA is the
organic aerosol mean molecular weight, and γOA is the particle phase activity coefficient, which is
assumed to be unity here. Note that the value of activity coefficient used in the model does not signifi-
cantly impact the simulated diurnal profiles; see Figure S3 in the supporting information.

The mass transfer between gas and aqueous phase (aerosol water) is described by a set of mass balance dif-
ferential equations (Seinfeld & Pandis, 2016), the general form of which, for the species i in the gas phase, is
given by

dCi
g

dt

 !
gaq

¼ –kgaq; iwAC
i
g þ

1

H*
i

kgaq; iwAC
i
aq (7)

where wA is the aerosol liquid water volume fraction, which is derived from the aerosol water content

measurements, H*
i is the effective Henry's law constant, Ci

aq is the corresponding concentration of species

i in the aqueous phase, and kgaq,i is the mass transfer coefficient for gas phase plus interfacial mass trans-
port, given by:

1
kgaq; i

¼ R2
aq

3Dg; i
þ 4Raq

3αaq; ici
(8)

where αaq,i is the gas aqueous accommodation coefficient for species i and Raq is the radius of the aqueous
aerosol, which is calculated based on the in situ measurements of the aerosol water content assuming the
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same amount of water is represented by one single liquid particle. Assuming identical size distributions as
organic aerosols, the correlation of Raq with Rp can be obtained based on the measurements of organic
aerosol mass concentration and aerosol water content. Values of parameters describing the multiphase
mass transfer processes are given in Table S3 in the supporting information.

The model was driven with in situ measured temperature, relative humidity, and pressure, as well as the
boundary layer height derived from ECMWF reanalysis data. Prior to each simulation, a 24 hr spin‐up period
was applied. The model was run in 10 min steps, and for each time step, the mass balance equation of any
given NMOC precursor incorporated in the model read in the instantaneously measured values. The simu-
lated concentrations of CO, NOx, O3, and HCHO are constrained to real‐time measurements. The photolysis
frequencies (J) of O3, NO2, NO3, HONO, HCHO, and H2O2 were constrained to real‐time measurements as
well, and the J values of other species were scaled to JNO2 . As described later, detailed analyses were con-
ducted on the freshest plume observed at the site, to essentially eliminate the effects of atmospheric aging
on the measurements and their interpretation.

3. Results and Discussions
3.1. Identification of Biomass Burning Plumes

Acetonitrile is a common biomass burning tracer that has been used to identify air parcels intercepted by fire
plumes (Coggon et al., 2016; De Gouw et al., 2003). As shown in Figure 1, periods with biomass burning
impact are readily distinguished by the intense pulses of acetonitrile, together with benzene, toluene, furan,
and furfural, a group of aromatics that exhibit strong positive correlation with acetonitrile. Furan and its
derivatives have been suggested as potential biomass burning tracers due to their significant enhancement
in fire plumes and relatively negligible emissions from primary urban and natural sources (Gilman
et al., 2015). A distinct diurnal pattern of selected tracers is observed during the campaign with a relatively
small day‐to‐day variability: A sharp peak appears around midnight and decreases fairly continuously after
the peak.

Organic species with average levels exceeding 1 ppb primarily comprise of small acids, alcohols, carbonyls,
and aromatic hydrocarbons. Their observed enhancement ratios (ERs) over background levels relative to the
acetonitrile enhancement (ΔX/ΔACN) observed after midnight are given in Figure 1b, along with the litera-
ture reported ERs obtained from laboratory‐based burns of a few types of wheat straw (WS). Molecular for-
mulas interpreted from PTR‐MS measurements, which are often likely composed of more than one species,
are given here for comparison purposes. In general, the ERs of species measured in the present study, parti-
cularly CH4O (methanol) and C3H6O (the mixture of acetone and propanal), appear reasonably close to the
ERs derived from burning dry wheat straw residues under smoldering‐dominant conditions. This is in fact
not surprising as late spring is the wheat harvest season in the Yangtze River Delta region, and large‐scale
burn typically occurs in May and June (Kudo et al., 2014). Note that wheat grown in different geographic
locations, whether China (CHN) or United States (US), yields similar ERs upon burning. Toluene has
slightly higher ERs compared with those measured from all types of wheat straw burn, suggesting that the
OH‐initiated chemistry is inappreciable in the fire plumes observed. One exception is C5H8 (isoprene), the
ER of which is lower by a factor of 1.5 on average compared with that derived from fresh plumes of burning
wheat straw residues. This is due to the high reactivity of isoprene toward NO3 radicals generated in the
nighttime fire plumes (Wennberg et al., 2018). Other NO3‐consuming molecules, such as C2H4O (acetalde-
hyde) and C4H6O (methacrolein and methyl vinyl ketone), exhibit different degrees of reduced ERs as well.
The extent to which the plumes encountered at the sampling site are processed in transit can be evaluated by
calculating the amount of isoprene reacted during the transport of the fire plumes. For the following discus-
sions, we choose the fresh fire plume to explore the atmospheric transformation mechanism of nitrophenols
and nitrocresols upon emissions.

3.2. Sources and Sinks of Nitrophenols and Nitrocresols

Figure 2 depicts the diurnal trends of nitrophenols and nitrocresols observed on 24May, when themaximum
levels were measured for both compounds during the campaign. A sharp increase is usually observed after
midnight, peaking around 4:00 local time, and then decays away by the early morning and maintains rela-
tively low levels throughout the day. By the late evening, a second peak appears, the intensity of which is
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approximately half of the first pulse. The average concentration of nitrophenols observed here is 46.4 ppt
(max = 121.7 ppt), higher than the reported gas phase range (0.02–56 ppt) measured in other geographic
locations (Belloli et al., 1999; Leuenberger et al., 1988; Lüttke et al., 1999; Yuan et al., 2016). Also given in
Figure 2 are the simulated temporal profiles of nitrophenols and nitrocresols, showing reasonable
agreement with the measurements. Additional simulations and comparison with observed diurnal
patterns during persistent biomass burning scenarios are given in Figure S4 in the supporting information.

The observed diurnal variation of nitrophenols and nitrocresols is a result of intertwined processes, includ-
ing emissions, physical losses, and photochemical production and removal, the relative importance of which
is further probed here. As a biomass burning tracer with negligible chemical reactivity in the atmosphere,
acetonitrile serves as an observational constraint for quantifying the combined effect of emission and
dilution. The emission rates of phenol and cresols as precursors of nitrophenols and nitrocresols,
respectively, are determined based on their ERs relative to acetonitrile (ΔPHE/ΔACN = 0.887 and
ΔCRE/ΔACN = 0.661) derived from standard dry wheat straw burning (Stockwell et al., 2015). It is worth
noting that these prescribed emission ratios would have resulted in an overestimation of nitrocresols if
any rapid oxidation process occurred prior to the detection of the plume because cresols are muchmore reac-
tive toward OH and NO3 than phenol. Nevertheless, as the measured ER of isoprene to acetonitrile indicates
that the plume examined here is rather fresh (ΔISOP/ΔACN = 0.73 compared with 0.84 ± 0.11 derived from
laboratory measurements), the uncertainties associated with the emissions of nitrophenols and nitrocresols
due to atmospheric aging prior to their detection are likely low.

As shown in Figure 2, nitrophenols and nitrocresols exhibit very similar diurnal patterns; we will hereby use
nitrophenols as an illustration for a detailed budget analysis. The pulse of nitrophenols appearing at
~04:00–05:00 local time is largely from the NO3‐initiated oxidation of primary phenol emissions. The chemi-
cal removal of nitrophenols at night is minor, while dilution by ventilation leads to a rapid decline of

Figure 1. (a) Temporal profiles of CO, acetonitrile (ACN), benzene, toluene, furan and furfural observed during the
campaign and (b) enhancement ratios (ERs) of selected species, including CH4O (methanol), C2H4O (acetaldehyde),
C3H6O (acetone and propanal), C5H8 (isoprene), C4H6O (methacrolein and methyl vinyl ketone), C4H8O (butanal and
methyl ethyl ketone), C6H6 (benzene), and C7H8 (toluene), to acetonitrile averaged over six time periods when
intensive acetonitrile emissions were observed (05/24, 05/29, 05/30, 06/01, 06/03, and 06/05)†. Also given are literature
reported ERs from burning of wheat straw (WS) and organic wheat straw grown in the United States (Stockwell
et al., 2015)‡, as well as Chinese (CHN) dry and wet wheat straw residues burnt under flaming‐dominant versus
smoldering‐dominant conditions (Inomata et al., 2015)¶. Note that the reported ERs of C5H8 by Inomata et al. (2015)
have potential C4H4O (furan) interferences.
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nitrophenols before dawn (Figure 2d). By the time of sunrise (~06:00), the mixed layer depth starts to
increase, further reducing the concentration by ~46%. The simulated turnover in the early morning
(~09:00–10:00) is particularly sensitive to the ascending rate of the boundary layer height. The level of
nitrophenols remains rather constant throughout the day, and no obvious increase is observed with the
onset of photochemistry. The production of nitrophenols from sequential benzene oxidation is well
balanced by the photochemical loss that is driven predominantly by photolysis. A series of sensitivity
analysis is further performed to evaluate the role of daytime and nighttime chemistry in modulating the
dynamics of nitrophenols and nitrocresols. The NO3‐initiated oxidation as both production and removal
pathways exerts primary control over the simulated profiles. For example, increasing the reaction rates of
nitrophenols and nitrocresols with NO3 by a factor of 10 reduces the simulated average concentrations by
~30% and ~50%, respectively; see Figure S6 in the supporting information. Photolysis constitutes an
important removal channel of nitrophenols, but less effective on nitrocresols, the average photolysis rate
of which is nearly 1 order of magnitude lower than that of nitrophenols (Bejan et al., 2007). Variations in
the photolysis rates of nitrophenols and nitrocresols by an order of magnitude lead to changes in the
simulated average daytime concentrations by ~80% and ~20%, respectively. The OH‐initiated oxidation
chemistry, either as production or loss pathways, does not remarkably affect the simulated diurnal trends
of nitrophenols and nitrocresols.

While the simulated diurnal profile of nitrophenols reasonably matches the observations throughout the
day, the nitrocresols simulation, on the other hand, starts to deviate low from themeasured trend in themid-
afternoon (~LT 15:00). By the time the second peak appears (~LT 21:00), the predicted nitrocresols level only

Figure 2. (a) Diurnal profiles of NOx on 24 May, when maximum levels of nitrophenols and nitrocresols were
observed throughout the campaign. (b) Simulated (sim.) and observed (obs.) diurnal variations of nitrophenols (NP).
(c) Simulated (sim.1: based case; sim.2: increasing reaction rates of methyl phenoxy radicals with NO2; sim.3:
NO‐dependent yield of cresols from OH‐oxidation of toluene) and observed (obs.) diurnal variations of nitrocresols (NC).
(d) Contribution of different production and removal processes, including OH‐initiated oxidation of benzene and
phenol, NO3‐initiated oxidation of phenol, OH‐ and NO3‐initiated oxidation of nitrophenols, photolysis of nitrophenols,
dilution, dry deposition, and entrainment, to the daily budget of nitrophenols. (e) Contribution of different production
and removal processes to the daily budget of nitrocresols. Rates of individual processes are given in Figure S5 in the
supporting information.

10.1029/2020JD033401Journal of Geophysical Research: Atmospheres

WANG ET AL. 7 of 13



accounts for a third of the measurement (Sim.1 in Figure 2c). Such an underprediction occurs during the
transition from OH oxidation to NO3 oxidation dominated chemical regime. Varying the NO3 concentration
by adjusting the reactive uptake coefficient of N2O5 on aerosols (in the range of 0.001–0.05 and a value of
0.02 [Evans & Jacob, 2005] is used as default) and consequently the sink of NO3 does not significantly
improve this underprediction as NO3 acts as both a source and a sink of nitrocresols. The NO3‐initiated oxi-
dation of cresols has been postulated to proceed via an overall H‐atom abstraction mechanism that occurs
after ring addition of NO3 to formmethyl phenoxy radicals, which further react with NO2 to form nitrocresol
isomers (Bolzacchini et al., 2001; Olariu et al., 2013). While increasing the reaction rate of methyl phenoxy
radicals with NO2 by a factor of 3 could certainly lead to an enhanced production of nitrocresols and thereby
better model‐measurement agreement at LT ~ 21:00–23:00, the model predictions during the first pulse at
LT ~ 04:00–05:00, however, would be inherently biased high (Sim.2 in Figure 2c). Another hypothesis with
the potential to explain the model‐measurement discrepancy is the varying yield of cresols as a function of
NO levels from toluene photooxidation, as opposed to a fixed value of 18% across all NO conditions as in the
current MCMv3.3.1 scheme embedded in the model. Indeed, the observed molar yield of cresols
(Y = 39 ± 5%) in the absence of NOx by Ji et al. (2017) is more than twice of the measurements conducted
under high NOx conditions (Klotz et al., 1998; Schwantes, Schilling, et al., 2017; Smith et al., 1998).
Birdsall et al. (2010) have found that the addition of NO to the toluene oxidation system could suppress
the yield of cresols by up to 30%. By parameterizing the NO‐dependent yield of cresols in the model scheme
(see details in Table S4 in the supporting information), the predicted levels of nitrocresols could match the
observations in the early evening (Sim.3 in Figure 2c) when the NO level was below 1 ppbv (Figure 2a). The
hypothesis of NO‐dependent yield of cresols from toluene photochemistry warrants further experimental
investigation, which is out of the scope of the current study.

3.3. Multiphase Chemistry of Isomer Resolved Nitrophenols and Nitrocresols

Nitrophenol isomers, including 2‐nitrophenol and 4‐nitrophenol, are produced from the reaction of NO2

with the phenoxy radical, which stems from the abstraction of phenol by either OH or NO3 (Atkinson
et al., 1992). While OH‐initiated oxidation of phenol only generates a small amount of 2‐nitrophenol
(~6%), both 2‐nitrophenol and 4‐nitrophenol have been observed through the NO3‐oxidation pathway, with
molar yields of ~24% and ~50%, respectively (Olariu et al., 2002). Interestingly, structural isomerism, parti-
cularly positional isomerism, has a significant impact on both volatility and water solubility of nitrophenol
isomers: The vapor pressure and Henry's law constant of 4‐nitrophenol at 298 K are 6.6 × 10−7 atm and
3.0 × 105 M atm−1, respectively, differing by at least 2 orders of magnitude from 2‐nitrophenol
(P2NP = 1.5 × 10−4 atm and H2NP = 81.1 M atm−1) (Sander, 2015; Scala & Banerjee, 1982). As shown in
Figure 3a, an appreciable fraction of modeled nitrophenols (up to ~30%) was found in the aerosol water pre-
dominantly in the form of the 4‐nitrophenol isomer. Despite the large difference in the vapor pressure of the
two isomers, their total fraction in the particle phase (in the range of 4.8 × 10−5–1.2 × 10−2) is still negligible
compared with the gas phase level. Yuan et al. (2016) calculated that the particle phase fraction of nitrophe-
nol isomers originating predominantly from secondary production is on average ~0.053, much higher than
the present study, primarily owing to the low temperature (−5 ± 5°C) prevailing during their campaign con-
ducted in winter. The varying degrees of multiphase partitioning of nitrophenol isomers can explain a num-
ber of previous measurements showing that 4‐nitrophenol is the dominant isomer in cloud water while the
majority of 2‐nitrophenol remains in the gas phase (Leuenberger et al., 1988; Levsen et al., 1993; Lüttke
et al., 1999). A number of nitrocresol isomers, including 3‐methyl‐2‐nitrophenol, 3‐methyl‐4‐nitrophenol,
4‐methyl‐2‐nitrophenol, 5‐methyl‐2‐nitrophenol, and 6‐methyl‐2‐nitrophenol, have been observed as pro-
ducts of OH/NO3‐initiated oxidation of toluene in the presence of NOx (Atkinson et al., 1992;
Grosjean, 1984; Olariu et al., 2002, 2013). In contrast to nitrophenols, the effect of structural isomerism on
the volatility of nitrocresol isomers is inappreciable (Dang et al., 2019). The fraction of all nitrocresol isomers
in organic aerosols (6.0 × 10−3–1.5 × 10−2) is slightly higher than nitrophenols due to the presence of an
additional methyl group that lowers the volatility. The water solubility of 3‐methyl‐4‐nitrophenol
(H3M4N = 6.8 × 104 M atm−1) is approximately 2–3 orders of magnitude higher than all the other isomers,
accounting for over 99% of the total nitrocresol isomers in the aerosol water, though still negligible compared
with the gas phase levels; see Figure 3a.
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The effect of aerosol physical state on the simulated profiles of nitrophenols and nitrocresols is probed by
varying the accommodation coefficient (αp), a parameter that approximates mass transfer resistances result-
ing from both interface accommodation and bulk phase diffusion. Low αp values characterize an amorphous
semisolid particle phase that can kinetically inhibit the mass transfer of nitrophenols and nitrocresols,
whereas αp of unity is characteristic of quasi‐instantaneous gas‐particle partitioning (Huang et al., 2016;
Krechmer et al., 2015; Zhang et al., 2014). As shown in Figure 3b, increasing αp from 10−5 to 1 leads to
enhanced partitioning of nitrophenols and nitrocresols to the aerosol phase by a factor of 1.6 and 4.3 on aver-
age, respectively. In addition, the characteristic timescale for establishing partitioning equilibrium decreases
from 58 days to 86 s for nitrophenols and 62 days to 92 s for nitrocresols, thereby yielding a particle phase
temporal profile that resembles the observed gas phase diurnal pattern. Overall, the treatment of
gas‐particle partitioning (retarded vs. instantaneous equilibration) does not significantly impact the simu-
lated gas phase concentrations of nitrophenols and nitrocresols.

A series of sensitivity tests were also performed to assess the role of aqueous phase nitration processes in the
formation of nitrophenols. A simplified reaction scheme that involves a sequential reaction of phenol(aq)
with OH(aq) and NO2(aq) is incorporated into the model (Barzaghi & Herrmann, 2002, 2004; Harrison,
Heal, et al., 2005). In the scheme, OH radicals in the aerosol water are either generated with a daytime pro-
duction rate of (0.3–3) × 10−10 M s−1 (Arakaki & Faust, 1998; Bianco et al., 2015; Wang et al., 2012; Zhang
et al., 2009) or remain constant in the range of 0.1–3.5 μM, a substantially high level that is likely present in
nascent cloud droplets (Paulson et al., 2019). As shown in Figure 3d, increasing aqueous OH concentrations
does not necessarily enhance the production of nitrophenols as the dissolved NO2(aq) generated from the
photolysis of nitrate and uptake of gas phase NO2 can be rapidly consumed by hydrolysis and reaction with
OH(aq) (see detailed reactions listed in Table S2 in the supporting information). As a result, the availability of
NO2(aq), which is the essential ingredient for nitrophenols formation, ultimately determines the amount of
nitrophenols(aq) that can be produced via the aqueous phenol(aq) nitration pathway. It is worth noting that
an incomplete representation of the kinetics that cascade nitrogen through its different oxidation states in
the aqueous phase may introduce large uncertainties to the simulated concentrations of NO2(aq).

Figure 3. (a) Fraction of nitrophenols (NP) and nitrocresols (NC) in the gas, particle and aqueous phases. Also given are
the aqueous phase fractions of 4‐nitrophenol (4NP) and 3‐methyl‐4‐nitrophenol (3M4N) as dominant isomers.
(b) Diurnal trends of particle phase nitrophenols and nitrocresols under a range of gas‐particle mass transfer resistances
represented by the accommodation coefficient (αp). (c) Measured concentrations of aerosol water content (AWC) and
organic aerosols (OA) that are used for simulating the multiphase mass transfer of nitrophenols and nitrocresols. (d) The
effect of aqueous phase nitration chemistry on the level of nitrophenols in aerosol water at noon (12:00–14:00 LT).
The aqueous phase OH radicals are either produced at a rate of POH = (0.3–3) × 10−10 M s−1 or remain constant as
COH = 0.1–3.5 μM.
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Nevertheless, the aqueous phase phenol(aq) nitration is shown to account for a minor pathway in the overall
nitrophenols production here as the amount of phenol(aq) dissolved in the aerosol water is rather limited and
the OH‐driven degradation does not significantly enhance its effective solubility.

4. Conclusions

With an emerging awareness of the role that nitroaromatics play in brown carbon formation and its climate
consequences, understanding the behavior of these chromophores in the atmosphere has become a priority
in atmospheric chemistry research. During the EXPLORE‐YRD campaign carried out in the late spring of
2018 in Eastern China, significant amounts of nitrophenols and nitrocresols, peaking at ~120 and ~80 ppt,
respectively, were observed as a result of large‐scale agricultural biomass burning activities during the wheat
harvest season. These two nitroaromatics exhibit a distinct diurnal pattern—a sharp peak appears after
midnight and then decays away by the early morning and remains low throughout the day until the early
evening when the second small peak develops—a pattern that implies the schedule of burning crop residues
in the area. These intensive biomass burning events identified in this study release large quantities of air pol-
lutants, including CO (avg. ~863 ppb), NOx (avg. ~46 ppb), O3 (avg. ~98 ppb), and PM2.5 (avg. ~95 μg/m

3); see
details in Figure S1 in the supporting information, representing one of the major anthropogenic emissions to
the local environment.

A 0‐D box model that accounts for the complex interplay of meteorological variations and atmospheric oxi-
dative processes was developed to examine mechanistically the role of different factors playing into the
atmospheric evolution of nitrophenols and nitrocresols. Processes that govern the diurnal behaviors of these
two nitroaromatics were identified, including nighttime oxidation as the predominant production channel
and the combination of dilution, entrainment, photolysis, and nighttime oxidation as major removal path-
ways. Additionally, the majority of the 4‐nitrophenol isomer resides in the aerosol water due to its high water
solubility, accounting for approximately one third of the total amount of nitrophenols measured in the atmo-
sphere. Therefore, the gas aqueous mass transfer of nitrophenols and their subsequent aqueous phase chem-
istry, if any, represent an important source of water‐soluble brown carbon in atmospheric aerosols under the
typical humid subtropical weather prevailing during the campaign.

The comparison of model simulations with measurements allows for the assessment of the extent to
which the physicochemical processes incorporated into the model framework are representative of the
actual atmospheric conditions. We show that the model adequately captures the diurnal variations of
nitrophenols but constantly underpredicts nitrocresols under low to intermediate NO conditions
(<1 ppb). From a series of sensitivity analysis, one hypothesis that potentially explains this underpredic-
tion is that the yield of cresols from toluene photooxidation is likely NO dependent, and using one fixed
yield value derived from experiments conducted in the presence of hundreds of ppb NO might not
accurately reflect the reaction pathways at play in the real atmosphere (Zhang et al., 2018).
Parameterizing the yield of cresols as a function of NO from toluene photochemistry in the model chemi-
cal scheme could help resolve the discrepancy between predictions and measurements. Understanding
the behavior of primary peroxy radicals from the OH‐initiated oxidation of toluene at a range of
atmospheric‐relevant NO levels requires additional work.
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